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Abstract-The paper presents a data reduction method for determination of thermal diffusivity in flash 
method. It is based on non-linear x2 fit to a model which takes into consideration heat losses. The advantage 
of the method is that it does not need a knowledge of base line and is suitable for data disturbed by noise 

and mains hum. A comparison with some other data reduction methods is given. 

1. INTRODUCTION 

The flash method introduced by Parker et al. [l] in 
1961 has become ;a widely accepted method for mea- 
suring thermal diffusivity of solids. In this method, a 
small disk-shaped sample is subjected to a very short 
burst of radiant energy from a laser or a flash lamp 
and the resulting temperature rise of the rear surface 
of the specimen is measured by a thermocouple or IR 
detector. Thermal diffusivity is then computed from 
the resulting temperature versus time data. 

Data reduction methods play a significant role in 
determination of thermal diffusivity. In the original 
paper [l] only one or a few data points from the 
measured temperature versus time curve were used 
to calculate the thermal diffusivity. The progress in 
computer technology during the past few decades have 
resulted in a number of data reduction techniques 
which are based on analysis of any part of the tem- 
perature vs time curve [2-51. The precision of a 
method depends upon adequately meeting the bound- 
ary conditions of the ideal theoretical model [ 11. This 
assumes uniform and instantaneous heat pulse 
absorbed in a very thin layer of a homogeneous, iso- 
tropic and opaque samples, no heat losses from the 
sample to the surroundings, temperature inde- 
pendence of the thermal properties within the tem- 
perature rise cause:d by irradiation. 

It is often not possible to fulfill these conditions, 
mainly heat losses and finite pulse time duration are 
usually unavoidable. In earlier works these effects 
were accounted for by multiplying the thermal diffu- 
sivity determined from the ideal model with the appro- 
priate numerical factor [6, 71. More recent methods 
are based on the general mathematical model obtained 
as a solution of al two-dimensional (2D) heat con- 
duction equation with the heat losses from the sample 
surface. In those methods the thermal diffusivity is 

determined either by means of several particular 
points or by using the temporal moments of the 
defined temperature interval of the thermogram [8,9]. 
Maillet et al. [lo] studied the influence of measurement 
noise on the calculation of thermal diffusivity utilizing 
Degiovanm et al. methods. Another approach is based 
on the knowledge that the response is less perturbed 
by heat losses at the start of the thermogram [l 1, 
121. Other papers take the advantage of the Laplace 
transform to convert the working equation into a sim- 
pler one [13, 141. 

The presented method is based on numerical fitting 
to the model which takes into account heat losses and 
mains hum. 

2. THEORY AND DATA REDUCTION 

When performing measurements with the flash 
method as described by Parker et al. [l] the tem- 
perature rise at the rear surface of the test specimen is 
given by : 

qr, t) = T, + ?-,(A t) (1) 

e T&t) = ~ 
pC&r2 

1+2 f (-1)“exp - 
n=l 

( yt)] 

where T,, is the initial temperature of the specimen 
[K], Q is the energy absorbed at the front surface (J), 
p is the density [kg mm3], C, is the specific heat [J 
kgg’K_‘], tl is the thermal diffusivity [m’s_‘], 1 is the 
thickness [ml, r is the radius [m] of the specimen and 
t is the time [s] elapsed since the flash energy was 
absorbed at the front surface of the test specimen. 
After infinite time the rear face temperature will reach 
its maximum value 
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NOMENCLATURE 

a thermal diffusivity divided by square T lmax maximum temperature rise on back 
thickness surface 

D Hessian matrix u voltage response 
B amplifier gain multiplied by the u0 baseline voltage 

thermoelectric power of the u h”tIl additional voltage caused by mains 
thermocouple hum 

CP specific heat u max maximum voltage of the response. 
L Biot number 
1 sample thickness 
P model parameter vector Greek symbols 
Q absorbed energy CI thermal diffusivity 
r sample radius a, thermal diffusivity value used in 
T temperature simulations 
TO initial temperature B possitive roots of equation (5) 
T, temperature rise at ideal conditions 1 LM method weighting factor 
I-l. temperature rise when heat losses wi multiples of the basic mains frequency 

occur P density 
t time e standard deviation. 

T Q 
lmax 

-~ 
- pC&r2 ’ 

Equation (1) is valid only under the ideal conditions. 
In the case of heat transfer between the sample and 
its environment, more complicated expression is used. 
Watt [15] proposed a solution for 1D heat flow and 
heat losses from the two parallel surfaces as 

where 

y 
n 

(x) = J~[Bn cos (Ax/O + L, sin WI01 
J(P~+L:)(BnZ+L:+L2)+L,(Bn2+L:) 

and fin (n = 1,2,3,. . .) are the positive roots of 

(/I”--L,L,)tanj=P(L,+L,). 

Since the thermocouple and the amplifier have lin- 
ear voltage vs temperature profiles, at least over a 
range of a few degrees, the voltage vs time curve can 
be expressed by : 

U(t) = U, + BT*(Z, t) (6) 

where U,, is the baseline of the amplified thermocouple 
voltage before the flash pulse, B is the amplifier gain 
multiplied by the voltage response per degree for the 
thermocouple used, and T*(l, t) represents either 
Ti(& 0 or T+K 0. 

The amphfied thermocouple voltage readings may 
be disturbed by superimposed mains hum, adequately 
expressed by : 

U hum =i$, hicos(wit+d (7) 

where hi, w, and cpi are amplitude, frequency and phase 
of the first N(3 + 5) multiples of the basic mains fre- 
quency w,. This influence can be minimized by 
numerical smoothing, which requires enough mea- 
sured points and is not applicable for responses of the 
order of l/w,. 

As heat losses usually do not occur during short 
time measurements, the response model for this case 
can be then expressed by 

U(t) = U, +BT,(I, t)+ U,,,,. (8) 

In the case of longer responses the influence of 
mains hum can be minimized by smoothing or during 
the measurement by using sampling rate synchronized 
by mains frequency. Heat losses should be taken into 
account. In this case our model is 

u(t) = U, +BT,I,Z([, t). (9) 

2.2. Data reduction method 
Due to the complexity of our response models (8) 

and (9) we have chosen the Levenberg-Marquardt 
(LM) x2 based fitting method, which enables to pro- 
cess nonlinear models with arbitrary number of par- 
ameters. Detailed description of the method, together 
with source code is given in [16], therefore we give 
only a brief outline. 

The LM method is an extension of inverse-Hessian 
and steepest descend function minimization methods 
[ 161 for the case of x2 merit function 

X2@) = ,g, [y,-,f91’ (10) 
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where y, are measured data samples, oi corresponding 
standard deviations, @ = (pL,p2,. . .pM) the model 
parameters and y&j) the model being fitted. 

The inverse-Hes#sian method takes advantage of the 
fact that a function f can be at a point ij which is 
sufficiently close to the searched minimum approxi- 
mated by a quadratic form. In that case one can 
directly compute the minimizing parameters as 

j& =ij-D-‘Vx’(ji) (11) 

where 

is the Hessian matrix of x2 at 3 and Vx’@) is the 
gradient of x2 with respect to pk, 

Vx2(F) = (g,...,gj. 
From equation (10) we obtain 

aYCxiri9 aY(xi2fi) 
aPk ap, 

a2Y(xi,P) 
- [Y, --Y(xi>m w . (12) 

I 1 

Since the term [J ‘t- -y(xi,ij)] in equation (12) should 
be a random mea:mrement error of each point which 
is uncorrelated with the model, the second derivatives 
cancel out. Thus. for the case of x2 function min- 
imization is the Hessian dependent only on first 
derivatives of the model function : 

If we introduce 

i azx2 
ck’ = Z apk ap, 3 

tjk=_;g 

imd 6~1 = PI,,,,” -PI, 

equation (11) can be rewritten as a set of linear equa- 
tions 

: ckdp, = bk. (14) 

In the iterative procedure, the system (14) is solved 
for 6p,, which define the next approximation of the 
searched paramett:rs. 

The steepest descend function minimization method 
works well also for the points, which are far from the 
searched minimizing point, where approximation by 
the quadratic form is impossible. The next approxi- 
mation can be in 1:his case computed by 

6p, = COllSt. bk. (15) 

The main idea of the LM method is to vary 
smoothly between the inverse-Hessian and steepest 

descend methods : the latter is used far from mini- 
mum, while the first in its vicinity, where approxi- 
mation by the quadratic form is possible. 

The authors proposed, first, to approximate the 
constant in equation (15) by l/lc,,. From (15) we 
then get 

lZCkkSPk = bk (16) 

and, second, to replace the system (14) by 

$, &dP, = bk 

where 

(17) 

c;, = Ckk(l +I) ifk = 1 
Ckl otherwise’ (18) 

During the iterative process, the contribution of both 
minimization methods can be controlled by the factor 
1 : when far from the minimum, I should be large and 
(17) goes to (16), otherwise I should decrease and 
(17) goes to (14). 

2.3. LM technique in the case ofjash method 
In this section we mention some details concerning 

the implementation of the LM method for the models 
(8) and (9). Generally, it is necessary to provide a 
function which evaluates the model and its partial 
derivatives with respect to the fitted parameters. 

The case of the model (8) without heat losses and 
with superimposed mains hum was straightforward. 
The fitted parameters were U,, B, a = u/l2 and hi, wi 
and cpi. Parameter a was used instead of GI due to 
instability of the fitting process caused by its small 
value. 

Although there are no special requirements on the 
fitted model function for the LM technique, we sim- 
plified the second, heat loss model (9) by a pre- 
sumption that heat losses from both rear and front 
faces of the specimen were equal (Ll = L2 = L). In 
that case we obtain : 

where 

Y” = 
D.’ cos j& + Lpn sin pn 

os(fl;+L2)+L . 
(20) 

From (5) we then get 

(fl’ - L2) tan 1 = 2pL. (21) 

The following parameters should then be searched 
for : T,,,,, a, U, and L. 

For the LM technique, it is necessary to compute 
all partial derivatives of the model function with 
respect to the parameters being fitted : 

f=L -= 2 Y, exp (--BhO 
aT,rnax “= 1 

(22) 
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- = - T,,,,t f Y& exp (-/Izat) aTL 
aa “= 1 

(23) 

(24) 

aT,= 1, 

au, 
We see that in order to compute aT,/aL it is necessary 
to know ag,jaL, which we can get from equation 
(21) : 

ak 2(8 + L tan B) -= 
aL 

2/?tanp+ 5 -2L’ 

In order to evaluate the derivatives (22)-(24) as well 
as the model (19) the positive roots of the equation 
(21) have to be found. Since this equation cannot be 
solved analytically, we solved it numerically using the 
Newton-Raphson method [16]. A more detailed 
description of solving a similar equation can be found 
in [17]. 

3. EXPERIMENTAL SET-UP 

The proposed data reduction has been tested on a 
set of measurements made by the apparatus which is 
briefly described below and its principal scheme is 
depicted in Fig. 1. The cylindrical test specimen was 
irradiated by the light from a flash lamp. A quartz rod 
(length 40 cm) was used as the light pipe to irradiate 
the front surface of the test specimen placed in the 
center of the 40 cm long heating furnace. The whole 
assembly is placed in a vacuum chamber. 

The temperature response was measured by an 
intrinsic chromel-alumel thermocouple (diameter 125 
pm) where each thermocouple wire was individually 
attached to the test specimen. The thermocouple sig- 
nal was led to an amplifier based on 725 and 741 ,uA 
in the standard configuration of gain approximately 
10’. In order to have a possibility to measure shorter 
responses, capacitance feedback filters, usually used 
to remove mains hum, were avoided and software 
solution of problem was preferred. A 12-bit successive 
approximation A/D converter controlled by a per- 
sonal computer was used to digitize the amplified ther- 
mocouple response. The start time of the transient 
temperature recording, i.e. the time when the flash 
was fired, was detected by a phototransistor. 

Dependent on the total measurement time, two 
ways of setting reading pulse frequency for sampling 
the thermocouple output were used : 

(1) for test specimens with long response time 

TType : SRM 1462, NIST (Gaithersburg, MD). 
JType : SRM 8425 (Bar 64, pos. 20-29, NIST (Gai- 

thersburg, MD). 

Flash, lamp 

, Phototransistor 

I t ----- Quartz rod 

_ Vacuum 
chamber 

- Sample 

- Heater 

Ampliier - A/D 
1 I/O ports 

converter 
I 

I PC 
I 

Fig. 1. Experimental set-up. 

((l’/cr) > 3) a signal derived from the mains frequency 
was used to minimize mains hum and 

(2) for test specimens with short response time 
((/‘ix) < 3) a software adjustable timer built into the 
A/D converter was used. 

The test specimens measured in the present work were 
prepared from two standard reference materials from 
NIST, stainless steel? (diameter 12.7 mm, length 6.14 
mm) and graphite1 (diameter 12.7 mm, length 3.63 
mm). The front surface of the stainless steel specimen 
was covered by a thin graphite layer to enhance 
absorption of the radiant flash energy. The presented 
data were measured at room temperature. 

4. RESULTS AND DISCUSSION 

The data reduction method as well as the data 
acquisition software were implemented in the C lan- 
guage. c+,,, value was used as an initial estimate of the 
diffusivity for the iterative process. Although this 
value was usually far from the optimum for responses 
with large noise and/or large heat losses, only a few 
iterations were necessary to find the solution. A typical 
processing time of a response containing 500 mea- 
sured points on a 33 MHz 486 personal computer was 
of the order of seconds. 

The proposed procedure has been tested on Monte 
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Fig. 2. 90% confidence limits for the thermal diffusivity a obtained by Monte Carlo simulation and LM 
fitting procedure. 

Carlo simulated thermograms with u, = 3.77 x 10m6 
m’s_‘. Figures 2(.a) and (b) show 90% confidence 
interval width of the fitted thermal diffusivity tl as a 
function of noise and hum (model (9)), and noise 
and heat losses (model (8)), respectively. The 90% 
confidence interval is a region around CI, that contains 
90% of results obtained by fitting the model par- 
ameters to a simulated noisy response. 100 noisy ther- 
mograms were computed for each combination of 
noise level, mains hum amplitude and Biot number L. 

From Fig. 2(a) 1Ne can see that the confidence limit 
width is nearly independent on superimposed mains 

hum amplitude, with maximum width 6% of M, for 
10% noise. On the other hand, Fig. 2(b) shows an 
increase of the confidence limit also for growing value 
of Biot number L. However, for the small level of 
noise and heat losses, which were observed in our 
measurements, its width does not exceed 5% of ct,. 

A similar procedure based on Monte Carlo simu- 
lation was chosen also for a comparison of the pro- 
posed LM method with some other methods. For the 
calculation of thermal diffusivity by these methods 
a software package [18] was used. Two sets of 100 
thermograms were simulated with M. = 3.77 x lop6 
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Table 1. Simulation results for various data reduction methods and two levels of noise (a = 3.77 x 10m6 m*s-‘, L = 0.1). 

u,,,, [m2s-‘I 
Noise [ 1 %] 
D [%] c90 [%] 

Noise [5X] 
E,,,, [m’s_ ‘I D [X] c90 [%] 

Degiovanni [5] 3.908 x 10m6 3.665 2.849 4.076 x 1O-6 8.108 7.782 
Takahashi [ 151 3.832 x 10m6 1.633 5.587 3.880 x 1O-6 2.923 33.730 
GembaroviE [16] 3.818 x 1O-6 1.276 3.187 3.915 x 10m6 3.835 17.570 
LM 3.771 x 1o-6 0.046 0.73 3.768 x 1O-6 - 0.040 3.580 

Table 2. Thermal diffusivity CI of stainless steel and graphite (1O-6 m’s_‘). 

Stainless steel 
Graphite 

ct,,,, [1O-6 m*s-‘1 uNIST [10e6 m’s_‘] 

3.67 If: 0.08 3.77 
76.00+0.19 76.60 

m*s- ’ and Biot number L = 0.1. Both sets were dis- 
turbed by additive noise with standard deviation 1% 
and 5%, respectively. 

Table 1 shows mean value of thermal diffusivity 
(c1,,,,), its deviation from the ideal value (CI, - tl,,,,/ 
amean) (D) and 90% confidence limit (C90) for each 
method. These results indicate that the presented LM 
method is the least sensitive to measurement noise. 

In order to test the proposed fitting method on data 
from real experiment, a set of measurements on the 
two standard reference materials was done. For the 
stainless steel sample with the response time of the 

order of 10 s, sampling rate derived from mains fre- 
quency and the model (9) with heat losses were used. 
For the graphite sample with response time of the 
order of 0.5 s the model (8) incorporating mains hum 
fitting has been applied. The results of both measure- 
ments are given in Table 2 together with the value 
calculated from thermal conductivity, heat capacity 
and density data given by NIST [19, 201 for the par- 
ticular material. The deviation between the NIST 
value and the value measured in this experiment is less 
than 3%. 

Figure 3 depicts a typical response together with the 

measured 0 
fiee(.J ____. 

-I 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 
tlme[s] 

Fig. 3. Typical voltage vs time response of the graphite test specimen. 
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fitted model (8) for the graphite specimen. It illustrates 
that the model (8) Idescribes well the influence of mains 
hum on our short time measurements. 

Ii. CONCLUSIONS 

We have outlined use of Levenberg-Marquardt 
non-linear x2 fitting method for data reduction in flash 
method. Dependent on the duration of a response 
two models have lbeen proposed. The first procedure 
allows a set of parameters to be optimized : thermal 
diffusivity, Biot number, U, and U,,,. Thus the 
method does not need the exact knowledge of a base- 
line or maximum amplitude. They are used only for a 
rough estimation of ~~~~~ as the starting value for iter- 
ative process, so the method is not sensitive to shifts 
in baseline which may occur after triggering the flash 
pulse. The next model allows fitting of thermal diffu- 
sivity, U,,, U,,,,, and U,,,. This procedure is suitable 
for short responses disturbed by mains hum. 

The method converges rapidly, consuming time 
only in the order of seconds when performing cal- 
culations on a 33 MHz 486 PC. 

Confidence intervals of the LM method for various 
levels of measurement noise were estimated from 
Monte Carlo simulated responses. Their comparison 
with corresponding confidence levels of some other 
data reduction methods showed that the LM method 
was the least sensitive to the noise. 
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